
Balancing and Locomotion of an Inverted Pendulum
Duncan Mazza

Engineering Systems Analysis
Olin College of Engineering

Nathan Weil
Engineering Systems Analysis
Olin College of Engineering

Abstract—The goal of our project was to balance an two-
wheeled robot while adding additional capability. The robot
in question was Pololu Balboa modified such that it had a
significantly higher center of mass. Using template self-balancing
code provided by our professors, we performed characterization
of the robot’s motors and determined the effective length of the
robot as a pendulum. We then adjusted the poles of the control
system to produce control parameters that enabled the robot to
balance upright with as little oscillatory movement as possible.
After reaching this state, we extended the capability of the robot
to respond to a pilot via a remote control. We were very successful
with this, as our robot was very responsive to both throttle and
turning commands while remaining upright indefinitely under
nominal conditions.

I. CONTROL ALGORITHM

A. Static Balancing

The prescribed control algorithm for the robot is depicted
in fig. 1 where:

• d(t) is the signal of disturbances to the system
• θ(t) is the signal representing the angle of the pendulum

(measured relative to vertical)
• System blocks Kp and Ki comprise a proportional-

integral (PI) controller K(s) that removes the error in
the θ(t) signal; because the desired angle is 0°, θ(t) is
itself the error feeding into the K(s) controller

• M(s) is the motor transfer function defined as

M(s) =
ab

s+ a
(1)

• vd¬w(t) is the desired velocity of the motor the wheel
opposite of wheel w

• vc¬w
(t) is the control velocity signal for the motor of the

wheel opposite of wheel w
• System blocks Jp and Ji comprise a PI controller J(s)

that removes the error in velocity of the motors (which
is ideally 0m/s)

• Ci

s2 is the integral part of a PI controller C(s) that removes
the error in accumulated displacement of the motors
(which is ideally 0m); the proportional part of the PI
controller is not present because it would be redundant
with Ji

s .
• vw(t) is the actual speed of wheel w in m/s.
• Hvθ(s) is the transfer function relating the velocity of the

base to the angle of the pendulum; it is defined as

Hvθ(s) =
s

g − ls2
(2)

where g is the acceleration due to Earth’s gravity
(9.85m/s) and l is the effective length of the pendulum
(see §II-A for calculation of l).

d(t) θ(t)
+

Kp

Ki

s

++
M(s)

Jp

Ji
s

Ci

s2

+
vd¬w

(t)vc¬w
(t)

-

-

-

Hvθ(s)
vw(t)

+

Fig. 1. Prescribed control diagram for the inverted pendulum (no modifica-
tions).

A difference between the provided control diagram and the
one depicted in fig. 1 is the use of w and ¬w subscripts
to indicate the nuance in which measurements and signals
correspond to which wheel. The so-called criss-crossing of
displacement measurements present in the provided control
code is denoted by these subscripts. Because we implement
turning capabilities in the following section, we thought it
important to introduce these nuances in the diagram. Not
captured by the control diagram is the fact that the transfer
function M(s) doesn’t actually convert a signal from wheel
¬w to w, and Hvθ(s) considers only the velocity of the base
of the robot, not individual wheels; we will consider these
disparities negligible for the sake of clarity in subsequent
sections how turning is implemented.

B. Modifications to Control System for Locomotion
To enable locomotion, we incorporated a displacement

offset signal into the motor controlling part of the control
system. Sepcifically, we added the per-wheel displacement to
the integral term of the J(s) controller and added the average
of the wheels’ displacement to the accumulated distance term
of the C(s) PI controller; see fig. 2 for context in how they are
incorporated into the control algorithm. The per-wheel signal,
xrw(t) (note that the subscript r is referring to remote control),
is defined at time ti for each wheel w as:

xrw(ti) =

∫ ti

0

vrw(t)dt (3)

(because vr(t) is a discrete valued function in implementa-
tion, the integral is evaluated using a right Riemann sum).

1

Computing average of the wheels’ displacement, xravg
(ti), is

as follows:
xravg (t) =

xrL(t) + xrR(t)

2
(4)

where subscripts L and R correspond to the left and right
wheels.

The signal vr(t) is defined independently for each wheel w
at time ti by:

vrw(ti) =

{
Tthvrth(t)− Ttuvrtu(t) if w = L

Tthvrth(t) + Ttuvrtu(t) if w = R
(5)

where vrth(t) and vrtu(t) are the throttle and per-wheel control
signals received from the remote control respectively, and Tth
and Ttu are the parameters that scale the remote control’s
throttle and turning signals respectively to values reasonable
for the motor controlling API. With trial-and-error tweaking,
we found that Ttu = 0.2 and Tth = 0.35 worked well. The
difference in sign of the Ttuvrtu(t) term in eq. (5) accounts
for the wheels spinning in opposite directions according to
the direction the pilot tells the robot to turn. Code for the
functionality described in this section can be found in §V-A.

An important nuance to note in fig. 2 is that the signs of
xrw(t) and xravg

(t) are negative in their respective summation
nodes; an intuitive way of understanding this is that it makes
the control system think that the displacement of the robot is
behind where it should be.

d(t) θ(t)
+

Kp

Ki

s

++
M(s)

Jp

1
s Ji

xrw(t)

1
s2 Ci

xravg
(t)

+
vd¬w

(t)vc¬w
(t)

+
-

+
-

-
-

-

Hvθ(s)
vw(t)

+

Fig. 2. Modified control system enabling input from the remote control to
drive the robot.

C. Integrating Remote Control in Hardware and Firmware

To integrate remote control capability into the hardware
and firmware, we began by installing a small radio receiver
on the robot. Digital pins 2 and 3 on the PCB were used
as pulse width modulation (PWM) inputs. These pins were
chosen because of their pin-interrupt capabilities, enabling
a fast response and smooth PWM data input. The signal
communicated over pin 3 corresponds to the throttle control,
and the signal communicated over pin 2 corresponds to the
turning control. To read a PWM signal, the following was
performed for each pin individually:

1) When a signal pulse switches to high, the interrupt
triggers a function that records the start time of the pulse

2) The main loop function then continues until the signal
pulse returns to low, when a second interrupt function
compares the pulse start time to the end time.

3) This change in time is recorded as the pulse width.
We then shifted this PWM signal from its input range
of [1000 µs, 2000 µs] to be zero-centered; this value
corresponds to the respective vrth(t) or vrtu(t) signal.

The code implementing this capability can be found in §V-A.

II. CALCULATING HARDWARE-INTRINSIC PARAMETERS

A. Calculating Effective Length

In order to calculate the effective length of the inverted
pendulum, we began by doing a swing test of our robot. We
removed the wheels and held the robot upside-down by the
axles. The on-board Arduino ran provided code that output
gyro angle to the serial monitor on a laptop. We pushed the
robot to an angle of approximately 30 degrees, and let it swing
freely for three seconds. The data for this experiment is shown
in fig. 3.

Fig. 3. Data from our natural frequency measurement used to calculate the
effective length of the inverted pendulum.

To find the natural frequency ωn of the robot as a pendulum,
we wrote a MATLAB function (§V-B3) that takes the Fourier
transform of the recorded data. The function returns the fre-
quency corresponding with the largest value in the magnitude
of the Fourier transform. We found this value to be ωn = 4.77
rad/sec for our robot.

We calculated the effective length l of the robot as a
pendulum by using

1

ωn
= 2π

√
l

g
(6)

where g is acceleration due to gravity. Using the value ωn
found above, we solved for l and found a value of l = 0.431m.

2

B. Calculating Parameters for Motor Transfer Function

Recall the motor transfer function defined in eq. (1). The
step response of this transfer function with zero initial condi-
tions to the maximum control velocity signal, 300 (a unitless
parameter mapping to the maximum motor speed), is as
follows:

vstep(t) = 300b(1− e−at) (7)

To calculate the parameters a and b, we performed the fol-
lowing experiment while collecting data on the wheel speed
of each of the robot’s wheels: The robot was held upright and
stationary by one of us until both of the motors received the
vc(t) control signal of 300 for 3 seconds (an arbitrary amount
of time allowing the robot to reach its steady state velocity);
as the robot accelerated, the person holding the robot upright
followed the robot and attempted to keep it as upright as
possible. The measured velocities for each wheel were nearly
identical, and only the average of the wheel velocities was
considered for calibration; this average wheel velocity can be
seen in fig. 4. Using MATLAB’s curve fitting tool to fit a
curve of the form of vstep(t) yielded two adequate values for
a and b (denoted in fig. 4).

While the human intervention in this test makes it hard
to reproduce exactly and introduces some error, the high
performance of our robot’s balancing and driving capabilities
suggest that it served its purpose well.

Fig. 4. Calibration data (blue) and fit curve (red) used to generate values for
the parameters a and b used to define M(s).

III. CHALLENGES

A. Stationary Balancing

After determining l the parameters for MP (s), we solved
for the control parameters using the default1 system poles of:

• p1 = −0.5 + wni

1The poles that follow are unchanged from the provided poles, except for
poles p1 and p2

• p2 = p∗1
• p3 = −1
• p4 = p∗3
• p5 = −14

We used the default poles to calculate system function coeffi-
cients using code shown in §V-B2. When we input the default
system function coefficients into the control code, the robot
oscillated somewhat aggressively and and drifted in position
over time. In order to make the robot more stable and prevent
drifting, we modified the poles.

• p1 = −4 + 2ωni
• p2 = p∗1
• p3 = −2
• p4 = p∗3
• p5 = −14
The rationale for the above changes can be summarized with

the following:
• The real component of all poles except p5 became more

negative to create a stronger decay of errors resulting
from disturbances

• The imaginary components of |p1| and |p2| increased
to combat the undesirable oscillations introduced by the
original parameters.

Note that these alterations cause a change in the dominant
response from the oscillating and exponentially decaying re-
sponse to a purely exponentially decaying response, as the
right most pole is repeating. When we input the new system
function coefficients calculated from the altered poles, the
robot was more stable in both oscillation and position, giving
us a resilient platform for implementing remote control.

B. Locomotion

The main challenge we encountered was to make our robot
controllable via remote control. Specifically, our goal was
for a person to pilot the robot using a hobby-grade radio
transmitter, resulting in the robot moving effortlessly through
its environment while being responsive to the input. We tried
multiple methods of controlling the robot’s motion before
landing on a final, relatively simple solution.

We began by tackling PWM inputs from the radio receiver.
After researching ways of reading PWM signals, we decided
to use the more challenging interrupt pin method due to
its reported smoothness and reliability. It proved easier than
expected to implement, and provided smooth data with no
noticeable delay on the control loop.

The largest challenge on our way to remote control was
integrating the PWM signal from the receiver into the existing
control loop for the robot. We first attempted control by adding
the mapped input signal value directly to the motor output for
each wheel. Though this intuitively seemed like it should work,
the resulting movement was not what we expected. Because
the integral term in the main control loop ’pulls’ the robot’s
position back towards zero, directly manipulating the velocity
controlled the position of the robot on the ground. We found
this to be a fascinating effect of the control system design.

3

Although it was technically controlled remotely at that point,
we had not met goal of effortless and responsive control.

After considering a few other options such as adding an
offset to angle, we realized that the position control issues we
faced stemmed from the distance offset we were creating as we
pushed the robot away from its ”home” position. To solve this,
added the control input to the wheel position measurements
before the data enters the main control loop. This caused the
controller input to change the position like before. However,
the control was much more responsive and smooth, helping
the robot’s stability. To switch from positional control to
velocity control, we integrated the input value and subtracted
it from the wheel positions, defining our own constant offset
as described above.

IV. RESULTS

We were very successful with achieving our goals:
• The robot remained upright unless it experienced a sig-

nificant disturbance
• With no remote control signal, the robot remained in

place
• Under remote control, the robot was agile and responded

quickly to inputs
A video of our robot being demonstrated in class can be

found at this link: https://youtu.be/ufF1Aeu0s3w.

V. CODE

A. Control Code

Below is initialization and description of the required vari-
ables for the remote control inputs.

1 // volatile variables for pwm inputs from ...
receiver

2 volatile int steer_value = 0; // Steering ...
PWM value

3 volatile int throttle_value = 0; // Throttle ...
PWM value

4

5 volatile int prev_timeS = 0; // PWM interupt ...
pin timer setup

6 volatile int prev_timeT = 0;
7

8 float steering = 0.; // mapped steering value
9 float throttle = 0.; // mapped throttle value

10 float l_input = 0.; // left input value
11 float r_input = 0.; // right input value
12

13 float s_coeff = .2; // steering map ...
factor (controls steering sensitivity)

14 float t_coeff = .35; // throttle map ...
factor (controls throttle sensitivity)

15

16 float steer_accum = 0.; // integral of ...
steering input

17 float throttle_accum = 0.; // integral of ...
throttle input

Below is an exceprt of the code that:
• Maps the inputs from the remote control
• Calculates the displacement accumulated by the remote

control signal and adds it to the measured displacement
of the wheels

• Calculates vcL and vcR :

1 // Remap steering and throttle values to 0 ...
centered and max magnitude of ...
sensitivity inputs

2 steering = mapfloat((float)steer_value, ...
1000., 2000., -s_coeff, s_coeff);

3 throttle = mapfloat((float)throttle_value, ...
1000., 2000., -t_coeff, t_coeff);

4

5 // Integrates mapped steering and throttle ...
inputs

6 steer_accum += steering*0.01;
7 throttle_accum += throttle*0.01;
8

9 v_d = Kp*(angle_rad) + Ki*(angle_rad_accum); ...
// this is the desired velocity from the ...
angle controller

10

11 // The next two lines implement the feedback ...
controller for the motor. Two separate ...
velocities are calculated.

12 // We use a trick here by criss-crossing the ...
distance from left to right and

13 // right to left. This helps ensure that the ...
Left and Right motors are balanced

14 v_c_R = v_d - Jp*measured_speedR - ...
Ji*distLeft_m - dist_accum*Ci;

15 v_c_L = v_d - Jp*measured_speedL - ...
Ji*distRight_m - dist_accum*Ci;

Below is the code that adds the steer_accum and
throttle_accum terms to the integrated distance terms for
each wheel:

1 distLeft_m = ((float) distanceLeft) / ...
((float) G_RATIO) / 12.0 * 80.0 / 1000.0 ...
* 3.14159 - steer_accum - throttle_accum;

2 distRight_m = ((float) distanceRight) / ...
((float) G_RATIO) / 12.0 * 80.0 / 1000.0 ...
* 3.14159 + steer_accum - throttle_accum;

3 dist_accum += (distLeft_m + distRight_m) * ...
0.01 / 2.0;

Below are the functions which measure and record the
PWM input from the radio receiver. The rising functions
record the time code at which the voltage rises. The falling
functions calculate the width of the pulse when the voltage
falls.

1 void risingS() {
2 attachInterrupt(2, fallingS, FALLING);
3 prev_timeS = micros();
4 }
5

6 void risingT() {
7 attachInterrupt(3, fallingT, FALLING);
8 prev_timeT = micros();
9 }

10

11 void fallingS() {
12 attachInterrupt(2, risingS, RISING);
13 steer_value = micros()-prev_timeS;
14 }
15

16 void fallingT() {
17 attachInterrupt(3, risingT, RISING);
18 throttle_value = micros()-prev_timeT;
19 }

4

https://youtu.be/ufF1Aeu0s3w

B. Analysis Code

1) Code for Calculating Control Parameters: Running the
following code solves for the values for the control parameters
Kp, Ki, Jp, Ji, and Ci using the transfer function of the
control system and the desired poles:

1 % add paths for functions not in directory
2 addpath("Natural Frequency Calculation\Data ...

and Analysis\");
3 addpath("Motor Transfer Function ...

Calibration\Data and Analysis\");
4

5 % acceleration due to gravity
6 g = 9.85;
7

8 % data for calculating natural frequency
9 frequency_test_file = "Natural Frequency ...

Calculation\Data and ...
Analysis\swing_data.mat";

10 load(frequency_test_file)
11

12 % calculating effective length of pendulum
13 fs = 1/0.05; % sample frequency
14 wn = find_strongest_freq(swing_data, fs);
15 l = g / wn.ˆ2;
16

17 % data for calculating motor parameters
18 motor_test_file = "Motor Transfer Function ...

Calibration\Data and Analysis\test1.mat";
19

20 % motor parameters
21 [a, b] = findAandB(motor_test_file, false);
22

23 % system poles
24 p1 = -4 + wn*2i;
25 p2 = conj(p1);
26 p3 = -2;
27 p4 = conj(p3);
28 p5 = -14;
29

30 [Jp, Ji, Kp, Ki, Ci] = findControlParams(wn, ...
a, b, l, p1, p2, p3, p4, p5);

The output for this script is printed into the MATLAB
console in the following format:

1 #define Jp 416.408
2 #define Ji -8415.92
3 #define Kp 7679.4
4 #define Ki 40041.9
5 #define Ci -7341.95

These compile directives can be supplanted into the control
code (§V-A) to modify the robot’s behavior. This code has
three dependencies for user-defined functions not provided in
the assignment shown; they are shown in the following three
sections.

2) Code for Solving for the Control Parameters Given
Poles: Below is the code that, given all of the parameters
intrinsic to the robot’s hardware and 5 desired poles (p1, p2,
p3, p4, and p5), returns the control system parameters:

1 function [Jp, Ji, Kp, Ki, Ci] = ...
findControlParams(wn, a, b, l, p1, p2, ...
p3, p4, p5)

2 syms s Kp Ki Jp Ji Ci % define symbolic ...
variables

3 g=9.85;

4 Hvtheta = -s/l/(sˆ2-g/l); % TF from velocity ...
to angle of pendulum

5 K = Kp + Ki/s; % TF of the angle controller
6 J = Jp + Ji/s + Ci/sˆ2; % TF of the ...

controller around the motor
7 M = a*b/(s+a); % TF of motor
8 Md = M/(1+M*J); % TF of motor + feedback ...

controller around it
9 % J is applied on the feedback path

10

11 % this is the total transfer function from ...
disturbance d(t) to \theta(t)

12 Htot = 1/(1-Hvtheta*Md*K);
13

14 % this is the target characteristic polynomial
15 tgt_char_poly = ...

(s-p1)*(s-p2)*(s-p3)*(s-p4)*(s-p5);
16

17 % get the denominator from Htot_subbed
18 [¬, d] = numden(Htot);
19

20 % find the coefficients of the denominator ...
polynomial TF

21 coeffs_denom = coeffs(d, s);
22

23 % divide out the coefficient of the highest ...
power term

24 coeffs_denom = coeffs(d, s)/(coeffs_denom(end));
25

26 % find coefficients of the target ...
charecteristic polynomial

27 coeffs_tgt = coeffs(tgt_char_poly, s);
28

29 % solve the system of equations setting the ...
coefficients of the

30 % polynomial in the target to the actual ...
polynomials

31 solutions = solve(coeffs_denom == ...
coeffs_tgt, Jp, Ji, Kp, Ki, Ci);

32

33 % display the solutions as double precision ...
numbers

34 Jp = double(solutions.Jp);
35 Ji = double(solutions.Ji);
36 Kp = double(solutions.Kp);
37 Ki = double(solutions.Ki);
38 Ci = double(solutions.Ci);
39 fprintf("#define Jp %g\n#define Ji ...

%g\n#define Kp %g\n#define Ki ...
%g\n#define Ci %g\n", Jp, Ji, Kp, Ki, Ci);

40 impulse_response_from_sym_expression(subs(Htot))

3) Code for Determining the Pendulum’s Natural Fre-
quency: Below is the code that, when given a time series
x sampled at frequency Fs, returns the radial frequency of the
strongest frequency present in the signal:

1 function max_mag_freq = ...
find_strongest_freq(x, Fs)

2 %Returns the frequency (in rad/sec) ...
corresponding with the largest value in

3 %the magnitude of the FFT
4 % x = input signal
5 % Fs = sampling frequency in Hz
6 if (mod(length(x),2) 6=0)
7 x = x(1:end-1);
8 end
9 mid_idx = floor(length(x)/2)+1;

10 freq_Hz_all = linspace(-Fs/2, ...
Fs/2-Fs/length(x), length(x));

11 freq_Hz_right_handed = freq_Hz_all(mid_idx:end);
12 mag_FFT_all = 1/length(x)*fftshift(abs(fft(x)));

5

13 mag_FFT_right_handed = mag_FFT_all(mid_idx:end);
14 max_mag_pos = find(mag_FFT_right_handed == ...

max(mag_FFT_right_handed));
15 if (length(max_mag_pos) > 1)
16 % in the case that there is a tie for the ...

maximum magnitude, pick the
17 % first instance
18 max_mag_pos = max_mag_pos(1);
19 end
20 max_mag_freq = ...

2*pi*freq_Hz_right_handed(max_mag_pos);

4) Code for Curve-fitting Step Response Data: Below is
the code that fits a curve to motor velocity data from a step
response run; the data is loaded from a struct located at path
data_file:

1 function [a, b] = findAandB(data_file, ...
plot_bool)

2 %Finds the a and b parameters of the motor ...
speed/control transfer function

3 % Parameters:
4 % data_file is the path to the file of ...

the left and right wheel
5 % velocity data
6 % plot_bool is a boolean for whether the ...

result of fitting is plotted
7 % The data_file can be generated by ...

following these steps:
8 % 1) Copy the output from the serial ...

monitor of the left and right
9 % wheel speeds. Assuming it is formatted ...

correctly, you can paste it
10 % in as follows:
11 % motor_vel_data = [paste here]
12 % 2) Then run the following commands to ...

save the .mat file by filling
13 % in the filename and the sample rate ...

(in seconds) at which the data
14 % was collected:
15 % test_data = ...

struct("motor_vel_data", ...
motor_vel_data, ...

16 % "sampling_rate", 0.02)
17 % save 'filename.mat' test_data
18

19 load(data_file, 'test_data');
20 motor_vel_data_dims = ...

size(test_data.motor_vel_data);
21 if motor_vel_data_dims(2) 6=2
22 error("Provided motor velocity data ...

must be in the form of " + ...
23 "a nx2 matrix")
24 end
25

26 t = linspace(0, ...
(length(test_data.motor_vel_data) - ...
1) * ...

27 test_data.sampling_rate, ...
length(test_data.motor_vel_data));

28 RandLAvg = (test_data.motor_vel_data(:, ...
1) + ...

29 test_data.motor_vel_data(:, 2))./2;
30

31 [xData, yData] = prepareCurveData(t, ...
RandLAvg');

32

33 % Set up fittype and options.
34 ft = fittype('300*b*(1-exp(-a*x))', ...

'independent', 'x', ...
35 'dependent', 'y');
36 opts = fitoptions('Method', ...

'NonlinearLeastSquares');
37 opts.Display = 'Off';
38 opts.StartPoint = [0.901700858801764 ...

0.184296530601589];
39

40 % Fit model to data.
41 [fitresult, ¬] = fit(xData, yData, ft, ...

opts);
42 a = fitresult.a;
43 b = fitresult.b;
44

45 if plot_bool
46 fprintf("a: %g\n", a);
47 fprintf("b: %g\n", b);
48 % Plot fit with data.
49 figure('Name', 'Motor test parameter ...

fitting');
50 h = plot(fitresult, xData, yData, '-');
51 legend(h, 'Speed vs. t', 'Fit curve ...

vs. t', 'Location', ...
52 'NorthEast', 'Interpreter', 'none');
53 % Label axes
54 xlabel('Time (seconds)', ...

'Interpreter', 'none');
55 ylabel('Average of left and right ...

wheel speed (m/s)', ...
56 'Interpreter', 'none');
57 title(sprintf("Motor Calibration Data ...

and Curve Fitting\nParameters: a = ...
%g, b = %g", a, b))

58 grid on
59 end
60 end

6

	Control Algorithm
	Static Balancing
	Modifications to Control System for Locomotion
	Integrating Remote Control in Hardware and Firmware

	Calculating Hardware-Intrinsic Parameters
	Calculating Effective Length
	Calculating Parameters for Motor Transfer Function

	Challenges
	Stationary Balancing
	Locomotion

	Results
	Code
	Control Code
	Analysis Code
	Code for Calculating Control Parameters
	Code for Solving for the Control Parameters Given Poles
	Code for Determining the Pendulum's Natural Frequency
	Code for Curve-fitting Step Response Data

